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1. Problem Overview

Context: This experimental box was created for Performance
Evaluation of Building Environment (Dr. Nguyen Hop Minh).
The bulb temperature Tbulb is needed to feed CFD (Computational
Fluid Dynamics) simulations, but no sensor can measure it directly
at 200–300°C without melting. This Kalman Filter method esti-
mates Tbulb from indirect air temperature measurements.

Two air-temperature sensors:

Sensor A (near-field)

Close to bulb, high noise: zA ≈ Tair-near

Sensor B (far-field)

Farther away, low noise: zB ≈ Tair-room

Both are indirect proxies. Distances dA and dB model heat dif-
fusion.

2. Why Indirect Measurement?

�Bulb surface: 200–300°C (sensors melt)

�Only air temperature available

�Heat diffusion + convection: noisy, time-varying

⇒ Requires state estimation, not direct measurement.

3. Diffusion Model

Heat diffusion model: Temperature attenuates with distance from
source.

Tsensor(d) =
Tbulb

1 + d/ℓ
+ noise

where ℓ = 10 cm is characteristic length scale.
Airflow, turbulence, convection � measurement noise.

Hidden state: x = Tbulb (cannot measure directly at 200-300°C)
Input data (from CSV):

zA = Middle Heat Source (Sensor A, close: dA = 5 cm)

zB = Air Tube Output (Sensor B, far: dB = 15 cm)

Schematic: Sensor A (close, high noise) and Sensor B (far, low noise).

4. Kalman Filter Solution

Linking Diffusion Model to Kalman Filter:
From diffusion model: z = x

1+d/ℓ + v relates sensor measurements to hidden bulb temperature via obser-
vation model z = Hx + v:

�HA = 1/(1 + dA/ℓ) = 1/1.5: Attenuation factor for Sensor A (dA = 5 cm)

�HB = 1/(1 + dB/ℓ) = 1/2.5: Attenuation factor for Sensor B (dB = 15 cm)

�RA = 2.0°C²: Sensor A noise variance (close � high turbulence)

�RB = 0.5°C²: Sensor B noise variance (far � stable air)

� x: Hidden bulb temperature Tbulb (true value unknown)

� x̂: Estimated bulb temperature (KF output)

�P : Estimation uncertainty (error covariance)

�Q = 0.1°C²: Process noise (bulb temperature fluctuations)

�K: Kalman Gain (optimal weight balancing prediction vs measurement)

Probabilistic Framework: Bayesian inference with Gaussian distributions.
Prior: p(x) = N (x; x̂, P ), Likelihood: p(z|x) = N (z;Hx,R)
Posterior: By Bayes’ rule, p(x|z) ∝ p(z|x) · p(x) yields p(x|z) = N (x;µpost, σ

2
post)

The Kalman Filter computes µpost and σ2
post in closed form:

Prediction Step (Prior Propagation)

Purpose: Propagate previous estimate forward in time, accounting for process uncertainty.

x̂pred = x̂prev (assume bulb temp stays constant)

Ppred = Pprev +Q (add process noise: uncertainty grows)

Interpretation: Since we have no control input, the best prediction is the previous estimate. However,
uncertainty increases by Q = 0.1°C² due to natural temperature fluctuations. This gives prior p(x) =
N (x; x̂pred, Ppred) before incorporating new measurements.

Update Step (Posterior via Bayes)

Purpose: Fuse prediction with sensor measurements to reduce uncertainty.
Sensor A Update: Combine prior p(x) = N (x; x̂pred, Ppred) with likelihood p(zA|x) =
N (zA;HAx,RA)

KA =
PpredHA

HAPpredHA +RA
=

Ppred

Ppred +RA
(Kalman Gain: optimal weight)

x̂A = x̂pred +KA(zA −HAx̂pred) (weighted average of prediction & measurement)

PA = (1−KAHA)Ppred (uncertainty reduced by measurement)

Key Insight: KA balances trust in prediction vs measurement:

� If Ppred ≫ RA (prediction uncertain, sensor reliable) ⇒ KA ≈ 1 (trust sensor)

� If Ppred ≪ RA (prediction confident, sensor noisy) ⇒ KA ≈ 0 (trust prediction)

Sensor B Update: Sequentially update with second sensor p(zB|x) = N (zB;HBx,RB)

KB =
PA

PA +RB
, x̂new = x̂A +KB(zB −HBx̂A), Pnew = (1−KBHB)PA

Result: Final estimate x̂new optimally fuses both sensors. Since RB < RA (Sensor B more reliable), it
receives higher weight in fusion.

Real Experimental Data

Setup: Heat source box, two ambient sensors

� dA = 5cm (close), dB = 15cm (far)

� RA = 2.0 (noisier), RB = 0.5 (stable)

� Process noise: Q = 0.1

Key Results at t = 100s:

� Sensor A: 40.5°C (close, noisy)

� Sensor B: 31.5°C (far, stable)

� KF bulb estimate: 69.0°C

Overall Statistics (600s):

� Sensor A: Mean=36.4°C, Std=2.1°C

� Sensor B: Mean=30.5°C, Std=0.6°C

� Bulb estimate: Mean=67.2°C, Std=2.2°C

Data from Dr. Nguyen Hop Minh’s Building Environment Performance Evaluation box.

5. Discussion

Method Overview:

�Challenge: Estimate hidden bulb temperature from indirect air sensor measurements

�Approach: Sequential Bayesian inference via Kalman Filter with two complementary
sensors

Experimental Results:

�Bulb estimate: Mean=67.2°C, Std=2.2°C (600s)

�KF fuses Sensor A (close, noisy) with Sensor B (far, stable)

�Kalman Gain adaptively weights sensors by uncertainty

Interactive Demo:
https://leonathn.github.io/FinalProjectProbability
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