Indirect Temperature Estimation Using Kalman Filter (Two Sensors)

1. Problem Overview

Tran Hoai Nhan — Le Hong Nhat Tan
Probability Course Fall 2025 — Professor: Tran Vinh Linh

Interactive Demo: https://leonathn.github.io/FinalProjectProbability/

4. Kalman Filter Solution

Real Experimental Data

Context: This experimental box was created for Performance
Evaluation of Building Environment (Dr. Nguyen Hop Minh).
The bulb temperature T, is needed to feed CFD (Computational
Fluid Dynamics) simulations, but no sensor can measure it directly

at 200-300°C without melting. This Kalman Filter method esti-
mates Ti,, from indirect air temperature measurements.

Two air-temperature sensors:

Sensor A (near-field)

Close to bulb, high noise: 24 ~ T near

Sensor B (far-field)

Farther away, low noise: 2 =~ Thiir-room

Both are indirect proxies. Distances d4 and dp model heat dif-
fusion.

2. Why Indirect Measurement?

e Bulb surface: 200-300°C (sensors melt)
e Only air temperature available
e Heat diffusion + convection: noisy, time-varying

= Requires state estimation, not direct measurement.

3. Diffusion Model

Heat diffusion model: Temperature attenuates with distance from

Source.

Lo
Crsensor d) =
@) =1a7

where ¢ = 10 cm is characteristic length scale.
Airflow, turbulence, convection — measurement noise.

Hidden state: z = T}, (cannot measure directly at 200-300°C)
Input data (from CSV):

24 = Middle_Heat_Source (Sensor A, close: d4 =5 cm)
zp = Air_Tube_Output (Sensor B, far: dg = 15 cm)

- noise

Two Temperature Sensor Setup Diagram
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Schematic: Sensor A (close, high noise) and Sensor B (far, low noise).

Linking Diffusion Model to Kalman Filter:

From diffusion model: z = 7+ relates sensor measurements to hidden bulb temperature via obser-
vation model z = Hx + v:

e Hy=1/(1+ds/¢) =1/1.5: Attenuation factor for Sensor A (d4 =5 cm)
e Hp =1/(1+dp/l) = 1/2.5: Attenuation factor for Sensor B (dp = 15 cm)
e R4 = 2.0°C*: Sensor A noise variance (close — high turbulence)

e Rp = 0.5°C=: Sensor B noise variance (far — stable air)

e x: Hidden bulb temperature Ti,,;, (true value unknown)

e 2: Estimated bulb temperature (KF output)

e P: Estimation uncertainty (error covariance)

e () = 0.1°C=: Process noise (bulb temperature fluctuations)

e K: Kalman Gain (optimal weight balancing prediction vs measurement)

Probabilistic Framework: Bayesian inference with Gaussian distributions.
Prior: p(z) = N (x;z, P), Likelihood: p(z|z) = N (z; Hz, R)

Posterior: By Bayes’ rule, p(x]2) o< p(z|z) - p(z) yields p(z]z) = N(@; tpost; Oro)
The Kalman Filter computes o5t and O'gost in closed form:

Prediction Step (Prior Propagation)

Purpose: Propagate previous estimate forward in time, accounting for process uncertainty:.

Tpred = Tprey  (assume bulb temp stays constant)

Pyred = Poey + @ (add process noise: uncertainty grows)

Interpretation: Since we have no control input, the best prediction is the previous estimate. However,
uncertainty increases by ) = 0.1°C= due to natural temperature fluctuations. This gives prior p(z) =
N (2; Zpred, Pored) before incorporating new measurements.

Update Step (Posterior via Bayes)

Purpose: Fuse prediction with sensor measurements to reduce uncertainty.

Sensor A Update: Combine prior p(x) = N(Z;Zped, Porea) With likelihood p(z4lz) =

N(za; Hpx, Ry)

Ky — PrredH 4 _ BPred
HAPpredHA + Ry Ppred + Ry

TA = Tpred + Ka(za — HaZprea) (weighted average of prediction & measurement)

(Kalman Gain: optimal weight)

Py=(1—K4H4)Pyeq (uncertainty reduced by measurement)

Key Insight: K 4 balances trust in prediction vs measurement:

o [f Poq > Ry (prediction uncertain, sensor reliable) = K4 ~ 1 (trust sensor)

o [f Peq < Ry (prediction confident, sensor noisy) = K4 ~ 0 (trust prediction)

Sensor B Update: Sequentially update with second sensor p(zg|lz) = N (zp; Hgx, Rp)
P AT+ RB’
Result: Final estimate 2,0, optimally fuses both sensors. Since Rp < R4 (Sensor B more reliable), it
receives higher weight in fusion.

Kp Tnew = A+ Kp(2p — HpZa), Piw=(1— KpHp)Py

Real Experimental Data: Kalman Filter Temperature Estimation

~]
o
1

- Sensor B (Far, 15cm)

Sensor A (Close, 5cm)
=== Kalman Filter Estimate

o
(9]
1

[KF Estimate at t=100s: 69.0c]

(o)}
o
L

Temperature (Celsius)
N LN u Ul
o on o (@]

(OF)
U

i

0 100 200 300 400 500 600
Time (seconds)

Setup: Heat source box, two ambient sensors

e d4 = Hem (close), dp = 15cm (far)
o R4 = 2.0 (noisier), R = 0.5 (stable)

e Process noise: () = 0.1

Key Results at ¢ = 100s:

e Sensor A: 40.5°C (close, noisy)
e Sensor B: 31.5°C (far, stable)
e KF bulb estimate: 69.0°C

Overall Statistics (600s):

e Sensor A: Mean=36.4°C, Std=2.1°C
e Sensor B: Mean=30.5"C, Std=0.6"C
e Bulb estimate: Mean=67.2°C, Std=2.2°C

Data from Dr. Nguyen Hop Minh’s Building Environment Performance Evaluation box.

5. Discussion

Method Overview:

e Challenge: Lstimate hidden bulb temperature from indirect air sensor measurements

e Approach: Sequential Bayesian inference via Kalman Filter with two complementary
SENsors

Experimental Results:

Bulb estimate: Mean=67.2°C, Std=2.2°C (600s)
KF fuses Sensor A (close, noisy) with Sensor B (far, stable)

Kalman Gain adaptively weights sensors by uncertainty

Interactive Demo:
https://leonathn.github.io/FinalProjectProbability
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